
The MM algorithm for sparse logistic PCA using
the tight bound
A supplementary note to

“Sparse Logistic Principal Components Analysis for Binary Data”

Seokho Lee, Jianhua Z. Huang, Jianhua Hu

Abstract

We develop the MM algorithm for sparse logistic PCA using the tight ma-
jorizing bound. Comparison of the developed algorithm with the MM algorithm
using the uniform bound in terms of computing time is also presented.

1 MM algorithm with the tight bound

In this section, we develop the MM algorithm using the tight majorizing bound (4.1)
in the paper, which is

− log π(x) ≤ − log π(y)− {1− π(y)}(x− y) + 2π(y)−1
4y

(x− y)2. (1)

By substituting qijθij and qijθ
(m)
ij into x and y, the right hand side of (1) becomes

quadratic of the form w
(m)
ij (θij −x

(m)
ij )2 as with the uniform bound, but with different

weight w
(m)
ij and working variable x

(m)
ij as

w
(m)
ij = {2π(θ

(m)
ij )− 1}/4θ(m)

ij and x
(m)
ij = θ

(m)
ij /{2π(qijθ

(m)
ij )− 1}. (2)

When θ
(m)
ij ’s are available, we update θ

(m+1)
ij by minimizing the sum of squares

n∑
i=1

d∑
j=1

w
(m)
ij (θij − x

(m)
ij )2

over θij, or equivalently, over µj, ai and bj. Then we obtain w
(m+1)
ij and x

(m+1)
ij based

on θ
(m+1)
ij and use them for the next iteration step.

For the tight bound case, x
(m)
ij and w

(m)
ij are not well defined when θ

(m)
ij = 0 and

will be replaced by the limit of the corresponding quantities when θ
(m)
ij → 0. To be

specific, applying limθ→0{2π(θ)− 1}/θ = 1/2, we define

x
(m)
ij = lim

θ
(m)
ij →0

θ
(m)
ij

2π(qijθ
(m)
ij )− 1

=
2

qij

,

w
(m)
ij = lim

θ
(m)
ij →0

2π(θ
(m)
ij )− 1

4θ
(m)
ij

=
1

8

(3)

1



when θ
(m)
ij = 0. Now we use the same quadratic objective function defined in (4.9) of

the paper, which is

g(µ,A,B|µ(m),A(m),B(m))

=
n∑

i=1

d∑
j=1

[
w

(m)
ij

{
x

(m)
ij − (µj + aT

i bj)
}2

+ bT
j D

(m)
λ,j bj

]
,

(4)

but with the general weights and working variables giving in (3). Theorem 4.1 also
holds for such choice of weights and working variables (see the proof given in Appendix
A.1 of the paper). We, again, alternate the minimization of (4) with respect to µ, A
and B. The three weighted least squares problems have closed-form solutions given
as follows:

µ̂j = arg min
µj

n∑
i=1

wij(x
†
ij − µj)

2 =

∑n
i=1 wijx

†
ij∑n

i=1 wij

,

âi = arg min
ai

(x∗i −Bai)
TWi(x

∗
i −Bai)

= (BTWiB)−1BTWix
∗
i ,

b̂j = arg min
bj

(x̃∗j −Abj)
TW̃j(x̃

∗
j −Abj) + nbT

j Dλ,jbj

= (ATW̃jA + nDλ,j)
−1ATW̃jx̃

∗
j ,

(5)

where Wi = diag(wi) with wi = (wi1, . . . , wid)
T , W̃j = diag(w̃j) with w̃j = (w1j, . . . , wnj)

T

and other notations are the same as those previously defined. The MM algorithm
will alternate solutions in (5) until convergence. When the constant weighting scheme
wij = 1/8 is used, the solutions in (5) will reduce to the solutions described in Sec-
tion 4 for the uniform bound case. The details are summarized in Algorithm 2. As
we claimed before, Theorem 4.1 also holds in the tight bound case to guarantee the
convergence of the algorithm.

Our experience with Algorithm 1 and Algorithm 2 is that use of the tight bound
usually leads to less number of iterations of the algorithm but longer computing time
because of the complexity involved in computing the bound.

2 Comparison of two algorithms

The main difference of the two algorithms is that different majorization bounds are
used for the negative log likelihood function. To focus on this difference, we conducted
logistic PCA without regularization using the two algorithms and compared them
in terms of computing time and number of iterations needed for convergence. We
generated 100 simulated binary datasets of size (n, d) = (20, 50), (20, 100), (20, 200),
(50, 20), (100, 20) and (200, 20) using a rank-2 model with the same specification of
µ, A and B as in Section 6 of the paper. We computed the mean and standard

2



Algorithm 2 Sparse Logistic PCA Algorithm II

1. Initialize with µ(1) = (µ
(1)
1 , . . . , µ

(1)
d )T , A(1) = (a

(1)
1 , . . . , a

(1)
n )T and B(1) =

(b
(1)
1 , . . . ,b

(1)
d )T . Set m = 1.

2. Compute x
(m)
ij and w

(m)
ij using (2). Set X(m) = (x

(m)
ij ).

3. Set x
(m)†
ij = x

(m)
ij − a

(m)T
i b

(m)
j . Update µ using µ(m+1) = (µ

(m+1)
1 , . . . , µ

(m+1)
d )T

using

µ
(m+1)
j =

∑n
i=1 w

(m)
ij x

(m)†
ij∑n

i=1 w
(m)
ij

, j = 1, · · · , d.

4. Set X(m+1)∗ = (x
(m+1)∗
ij ) = X(m) − 1n ⊗ µ(m+1)T .

5. Denote the ith row vector of X(m+1)∗ as x
(m+1)∗
i . Set W

(m)
i = diag(w

(m)
i ) with

w
(m)
i = (w

(m)
i1 , . . . , w

(m)
id )T . Update A by A(m+1) = (a

(m+1)
1 , . . . , a

(m+1)
n )T using

a
(m+1)
i =

(
B(m)TW

(m)
i B(m)

)−1
B(m)TW

(m)
i x

(m+1)∗
i , i = 1, · · · , n.

Compute the QR decomposition A(m+1) = QR and replace A(m+1) by Q.

6. Denote the jth column vector of X(m+1)∗ as x̃
(m+1)∗
j . Set W̃

(m)
j = diag(w̃

(m)
j )

with w̃
(m)
j = (w

(m)
1j , . . . , w

(m)
nj )T . Compute D

(m)
λ,j as in (4). Update B by B(m+1) =

(b
(m+1)
1 , . . . ,b

(m+1)
d )T using

b
(m+1)
j =

(
A(m+1)TW̃

(m)
j A(m+1)+nD

(m)
λ,j

)−1
A(m+1)TW̃

(m)
j x̃

(m+1)∗
j , j = 1, · · · , d.

7. Repeat steps 2 through 6 until convergence.

deviation of the computing time (in seconds) and the number of iterations from 100
simulated datasets. The results are depicted Figure 1 where in the top panels we fix
the dimension d = 20 and vary the sample size n and in the bottom panels we fix the
sample size n = 20 and vary the dimension d. It is not surprising that the computing
time and the number of iterations needed for convergence increase with the sample
size and the dimension. It is also very clear that using the tight bound (Algorithm 2)
requires smaller numbers of iterations but using the uniform bound (Algorithm 1)
has a big advantage in computing time.

3



50 100 150 200

0
10

0
20

0
30

0
40

0
Computing time with d=20

Sample size

T
im

e 
(s

ec
)

Algorithm 1
Algorithm 2

50 100 150 200

0
50

0
15

00
25

00

Number of iterations with d=20

Sample size
N

um
be

r 
of

 it
er

at
io

ns

50 100 150 200

0
10

0
20

0
30

0
40

0
50

0

Computing time with n=20

Dimension

T
im

e 
(s

ec
)

50 100 150 200

0
50

0
15

00
25

00

Number of iterations with n=20

Dimension

N
um

be
r 

of
 it

er
at

io
ns

Figure 1: Comparison of two algorithms in terms of computing time and number of
iterations. The means are shown as circles and the vertical bars stand for +/− one
standard deviation from the mean.

4


